Manual Procedure

Cat. No. 12841 For 100 tests	R	2 x 50	ml
Cat. No. 12842 For 300 tests	R	6 x 50	ml

Cholesterol CHOD/PAP

Clinical Chemistry Reagents Liquid Stable Reagents

Enzymatic colorimetric method

Liquid mono Reagent

Test principle

Cholesterol esters +3H ₂ O	Cholesterol + 3 R-COOH
Cholesterol + O ₂ Chol. Oxidase	\rightarrow 4-Cholestenone + H ₂ O ₂
2H ₂ O ₂ + 4-aminophenazone + Phenol -	Peroxidase + 4H ₂ O+ Dye
Dvo - 4 (p. bonzoquinono monoimino) phonaz	1000

Dye = 4-(p-benzoquinone-monoimino)-phenazone

Serum cholesterol esters are hydrolyzed to cholesterol and free of fatty acids by cholesterol esterase enzyme. In the presence of oxygen and cholesterol oxidase, the cholesterol is converted to 4-cholestenone and hydrogen peroxide.

The oxidative condensation of phenol and 4-aminophenazone in the presence of peroxides (POD) produces rose colour dye which is measured at 505 nm. The intensity of the colour produced is directly proportional to the cholesterol concentration of the sample.

Concentrations in the test

Reagent R				
PIPES = (Piperazine-1.4-bis (2-ethane-sulfonic acid)	8.6	mmol/L		
Magnesium chloride	1.72	mmol/L		
Phenol	5.3	mmol/L		
4-Aminophenazone	0.29	mmol/L		
POD (Peroxidase)	600	U/L		
Cholesterol esterase	500	U/L		
Cholesterol oxidase	500	U/L		
Detergent, Stabilizer				
Standard : The Concentration as indicated on vial.				

Stability and preparation of working reagent Reagent R: liquid mono reagent, ready to use.

The reagent is stable up to expiry date given on the label when stored at +2 → +8 °C. Stability after opening the bottle: 2 months at +2 → +8 °C

Note: The reagents maybe go to slightly pink it is normal. Don't use if the reagents absorbance against distillate water more than 0.115.

Specimen collection and handling

Non-hemolyzed serum, heparinized, or EDTA plasma. Cholesterol is reported to be stable for 7 days at 2 - 8°C and for 6 months at - 20°C when properly protected against evaporation.

Calibrator / Standard

MediCal U Cat. No. 15011 Cholesterol STD. Cat. No. 16071

Quality control

Meditrol N Cat. No. 15171 Meditrol P Cat. No. 15181

Procedure

Wavelength	Hg 546 (500 - 560 nm)
Spectrophotometer	505 nm
Cuvette	1 cm light path
Temperature	37°C / 20 - 25 °C
Measurement	against reagent blank
Reaction	end point

In vitro diagnostics

Assay Calibrator/ Blank Sample Standard Distilled water 10 µl -----Calibrator/ Standard ------10 µl Sample ------10 µl Reagent R 1000 µl 1000 μl 1000 µl Mix, incubate for 5 min. at 37°C or 10 min. at 20 - 25 °C. Read absorbance (A). The color is stable for 30 min.

Calculation

Conc. _{Cholesterol} (mg/dl) =
$$\frac{A_{\text{Sample}}}{A_{\text{Cal./STD.}}}$$
 X Conc. _{Cal./STD.} (mg/dl)

Linearity

Up to 800 mg/dl (20.7 mmol/L).

If the result exceeds 800 mg/dl, repeat the test using diluted serum (1+4) with sodium chloride solution (0.9 %) and multiply the result by 5.

Interferences

- 1. Hemolysis: No significant interference of hemoglobin up to 500 mg/dl.
- Ascorbic acid: No significant interference up to 100 mg/dl. 2
- 3. Conjugated bilirubin: No significant interference up to 20 mg/dl
- Free bilirubin : As above. 4
- A number of drugs and substances may affect cholesterol results. 5.

Precaution

Reagents contain sodium azide. Don't swallow. Avoid any contact with skin and mucous membranes. Sodium azide may react with lead and copper plumbing to form explosive metal azides. Upon disposal, flush with large amounts of water to prevent azide build up.

Reference range

Total Cholesterol CHOD – PAP	≤4 wk.	50 - 170	mg/dl
	2 – 12 mth.	60 - 190	mg/dl
	≥ 1 yr.	110 - 230	mg/dl
	Adults	< 200	mg/dl
HDL- Cholesterol	Adults	> 35	mg/dl
LDL- Cholesterol	Adults	< 155	mg/dl

References

- 1. Trinder, C. Clin. Chem. Clin. Biochem. 8 (1970) 658.
- Weibhaar, D. Grossau, E. and All., Med. Welt 26 (1975) 387 390.
 Kubler, W., Symp. der Deutschen Gesellschaft für Lab. Med. Mainz (1973). 4. Study group, European Atherosclerosis Society. Strategies for the prevention of colronary heart disease: A policy statment of the European Atherosclerosis
- Society. European Heart Journal 1987, 8:77. 5. Young, DS., Effects of Drugs on Clinical Laboratory Tests, fifth edition 2000, AACC Press, Washington, D.C.

First edition 2010